Digital Image Processing and Pattern Recognition

E1528
Fall 2021-2022

Lecture 12

Color Transformations INSTRUCTOR

DR / AYMAN SOLIMAN

Our Content

Color Complement
 1

Color Complement

An RGB image is basically a 3-D Image array ($\mathrm{M}^{*} \mathrm{~N}^{*} 3$) of color pixel, where each color pixel is associated with three values which correspond to red, blue and green.

So what is color complement?

- It's the same idea of negative transformation.
 value supported by the class of RGB image.
- for 'uint8' class type maximum value a pixel can have is 255.
- for 'uint16' class type maximum value a pixel can have is 65535.
- Similarly, Maximum possible pixel value in 'double' class type RGB image is 1.0 .

Color Complement

For example:-

Red $(255,0,0) \longrightarrow(0,255,255)$ cyan
green $(0,255,0) \longrightarrow(255,0,255)$ Magenta
Blue $(0,0,255) \longrightarrow$

Color Complement

What is the usage of image complement?
The main usage is dark areas become lighter and light areas become darker .

Color Complement

Complementing colors of an RGB Image with MATLAB

```
% read an RGB Image
img=imread('flower.jpg');
% complement colors of RGB image
comp=imcomplement (img);
% Display Complemented Image
imshow (comp);
```


Color Slicing

2

Color Slicing

Idea:
Display the color of interest so they stand out from background

Purpose:

Highlight a specific range of colors in an image in order to separate objects from surroundings.

Color Slicing

1-Cube Transformation

$$
\begin{aligned}
& s_{i}= \begin{cases}.5 & \text { if }\left[\left|r_{j}-a_{j}\right|>\frac{W}{2}\right]_{\text {any } 1 \leq j \leq n} \\
r_{j} & \rightarrow \text { keep the original color }\end{cases} \\
& i=1,2,3, \ldots, n
\end{aligned}
$$

2-Sphere Transformation

$$
S_{i}= \begin{cases}.5 & \text { if } \sum_{j=1}^{n}\left(r_{j}-a_{j}\right)^{2}>R_{0}^{2} \\ \text { otherwise } \\ r_{j} & \rightarrow \text { set to gray } \\ i=1,2,3, \ldots, n\end{cases}
$$

Color Slicing

After color slicing

Centered at $a=[.6863, .1608, .1922]$
$W=.2549$

$$
\mathrm{R} 0=.1765
$$

Color Slicing

```
%MATLAB CODE FOR SPHERE COLOR SLICING
a1 = [0.6863*255, . 1608*255,.1922*255];
R0 = .1765*255;
m= RO^2;
i=imread('fruit.png');
[rows, columns, numberOfColorChannels] = size(i);
o=i;
for col = l : columns
    for row = 1 : rows
        curr R = double(i(row, col, 1));
        curr G = double(i(row, col, 2));
        curr B = double(i(row, col, 3));
        x = (curr_R - al(1))^2 + (curr_G - a1(2))^2 + (curr_B - al(3))^2;
        if x > m
                \circ (row, col, 1)=.5*255;
                0 (row, col, 2) =. 5* 255;
                o(row,col, 3) =. 5*255;
        end
    end
end
imshow(0)
```


Tone And Color Correction 3

Tone and color Correction

The model of choice for many color management systems (CMS) is the CIE L*a*b*model also called CIELAB

The L*a*b* color components are given by the following equations:

$$
\begin{align*}
& L^{*}=116 \cdot h\left(\frac{Y}{Y_{W}}\right)-16 \tag{6.5-9}\\
& a^{*}=500\left[h\left(\frac{X}{X_{W}}\right)-h\left(\frac{Y}{Y_{W}}\right)\right] \tag{6.5-10}\\
& b^{*}=200\left[h\left(\frac{Y}{Y_{W}}\right)-h\left(\frac{Z}{Z_{W}}\right)\right] \tag{6.5-11}
\end{align*}
$$

where

$$
h(q)= \begin{cases}\sqrt[3]{q} & q>0.008856 \tag{6.5-12}\\ 7.787 q+16 / 116 & q \leq 0.008856\end{cases}
$$

Tonal correction Example

Middle-key Image

Corrected

Tonal correction Example

Heigh-key Image

Corrected

Tonal correction Example

Low-key Image

Color correction

The proportion of any color can be increased by :
$>$ decreasing the amount of the opposite (or complementary) color in the image
$>$ raising the proportion of the two immediately adjacent colors

So Magenta can be reduced by:

- Reduce Red and Blue
- Adding Green

Color correction

